

# Measurement of the W boson helicity in top quark decay at DØ

**Bertrand Martin** (LPSC Grenoble) for the D0 collaboration

APS April meeting -04/15/07

### Outline

- Motivations
- Analysis guideline :
  - dilepton
  - lepton + jets
- Analysis technique :
  - $\cos\theta^*$  templates



- Results of f<sub>+</sub> measurement
  - Bayesian C.L.

### Motivations

#### **Standard Model:**

Due to the observed **Parity violation**, charged current (W boson) only couples left handed particles

V-A structure of the EW current in the S.M. Lagrangian

Physics observable sensitive to a possible V+A component: W boson helicity

**Helicity** is measured through the  $\cos(\theta^*)$  distribution

 $\theta^*$ : angle between the **top quark** flight direction and

the charged lepton momenta in the W rest frame:



3 components in the  $cos(\theta^*)$  distribution : 3 helicity states



A non zero f<sub>+</sub> could sign new physics...



## Analysis guideline





- 2 final states: **dilepton lepton+jets**
- ☐ Select a data sample enriched in ttbar candidate events

  (estimate physics and instrumental background contamination)
- ☐ For each selected event,
  - o reconstruct the top quark & W boson leptonic decay
  - o compute  $cos(\theta^*)$
- $\square$  Compare the  $\cos(\theta^*)$  distribution obtained in data to different signal hypotheses :

which one is the **most compatible**with the observed data?

☐ Realize pseudo-experiments to estimate systematic uncertainties

in the analysis

### Event selection

### Dilepton ( ee , $e\mu$ , $\mu\mu$ ):

#### **Kinematics and topology**

- 2 high p<sub>T</sub> leptons (opposite charge)
- $\ge 2$  high  $p_T$  jets
- $M_{II}$  outside the **Z** mass (ee,  $\mu\mu$ )
- significant Missing  $E_T(2 v)$
- sphericity (ee),  $H_T$  (eµ)

### Main backgrounds:

- Drell-Yan :  $\mathbb{Z}/\gamma^*$  + jets
- Diboson (WW,WZ,ZZ)
- Fake lepton

#### Lepton (e, $\mu$ ) + jets :

#### **Multivariate selection**

- Only 1 high p<sub>T</sub> lepton
- $\ge 4$  high  $p_T$  jets
- Missing  $E_T (1 v)$
- Likelihood discriminant

(to suppress W+jets) | See next slide

#### Main backgrounds:

- -W + jets
- QCD multijet production

# Likelihood discriminant (Lt) in 1+jets

The variables used to discriminate signal (S) and background (B) must:

- be **well modeled** in the MC (K.S. proba > 5%)
- have different shapes between S and B

11 "good" variables (kinematics, b-tagging...)

$$L_{t} \sim \frac{S}{S+B} \sim \frac{e^{\sum_{i=1}^{N_{\text{var}}} \ln\left(\frac{s}{b}\right)_{i}^{fit}}}{e^{\sum_{i=1}^{N_{\text{var}}} \ln\left(\frac{s}{b}\right)_{i}^{fit}} + 1}$$

Among  $2^{11}$ -1 = 2047 possible  $L_t$ , the **best** one gives the **smallest** error on the measured  $f_+$ 







| Efficiency for best L <sub>t</sub> |                 |                 |
|------------------------------------|-----------------|-----------------|
| Source                             | $\mu$ +jets     | e+jets          |
| tt                                 | $0.72 \pm 0.29$ | $0.76 \pm 0.15$ |
| $W_{jjjj}$                         | $0.04\pm0.004$  | $0.07 \pm 0.02$ |
| QCD                                | $0.12 \pm 0.17$ | $0.10 \pm 0.02$ |

# $cos(\theta^*)$ templates

**After final cuts** (kinematics & topology for dilepton,  $L_t$  for l+jets), the **W leptonic decay**(s) have to be reconstructed :

- ▶ l+jets: 1 neutrino kinematically constrained fit: 1 solution
   o HITFIT is used for the (lepton b jet) pairing, assuming M<sub>top</sub>=172.5 GeV
- dilepton : 2 neutrinos unknown momenta underconstrained
  - o  $M_{top}$  assumption, algebraic resolution & average over the possible (lepton,jet) pairings

#### The $cos(\theta^*)$ distribution is built for :

- Data
- Signal for different  $f_+(V-A/V+A)$
- Background

 $\label{likelihood maximization} \textbf{Likelihood maximization}: find \ \textbf{which} \ \textbf{f}_{+} \\ \text{value} \ \textbf{best reproduces the data distribution}$ 



### Results with 370 pb<sup>-1</sup>



$$f_{+}^{l+jets} = 0.11 \pm 0.09 (stat)$$
 $f_{+}^{dilepton} = -0.09 \pm 0.15 (stat)$ 

$$f_{+}^{comb} = 0.056 \pm 0.080 \, (stat)$$

The likelihood maximization does not guarantee  $f_+>0$ !

Bayesian confidence level (CL %): use a prior probability density

 $\triangleright$  flat for  $f_+ \in [0, 0.30]$  and null in the non-physical region

Confidence interval  $[x_{min}, x_{max}]$  based on the likelihood integral, such that :



@ 95% of confidence level:

$$0 < f_{+}^{l+jets} < 0.264$$

$$0 < f_{+}^{dilepton} < 0.239$$

$$0 < f_{+}^{comb} < 0.226$$

9

## Summary

With 370 pb<sup>-1</sup> of analyzed data, the combined lepton+jets and dilepton measurements of the right handed W fraction  $f_+$  is:

(assuming  $f_0 = 0.70$ )



$$f_{+} = 0.056 \pm 0.080 \text{ (stat)} \pm 0.057 \text{ (syst)}$$
  
 $f_{+} < 0.226 \text{ @}95\%\text{C.L.}$ 

PHYSICAL REVIEW D **75**, 031102(R) (2007)



This measurement is compatible with the predicted Standard Model value :  $f_{\perp} = 1.36 \times 10^{-3}$ 

The analysis is currently updated with an integrated luminosity of ~ 1 fb<sup>-1</sup>

The CDF preliminary results for lepton + jets with  $\sim 1 \text{fb}^{-1}$  are :

- $f_{+} = -0.03 \pm 0.06 \text{ (stat)}^{+0.04}_{-0.03} \text{ (syst)}$  assuming  $f_{0} = 0.70 \text{ (}f_{+} < 0.10 \text{ @ }95\% \text{ C.L.)}$
- $f_0 = 0.59 \pm 0.12 \, (stat)_{-0.06}^{+0.07} \, (syst)$  assuming  $f_+ = 0$

# Backup slides

### The DO experiment







Results on the W helicity will be shown for 370 pb<sup>-1</sup> of analyzed data, while D0 has more than 2 fb<sup>-1</sup> on tape

### f, measurement

Likelihood maximization (w.r.t.  $n_s$  and  $n_{b,i}$ ):

Gaussian term for the background normalization

How well does this  $f_+$  hypothesis match with the  $\cos\theta^*$  data distribution

$$L(f_{+}) = \prod_{i=1}^{N_{bkg}} e^{\frac{\left(n_{b,i} - \overline{n}_{b,i}\right)^{2}}{2\sigma_{b,i}^{2}}} \times \prod_{j=1}^{N_{bins}} P(d_{j}; n_{j})$$
Observed

 $\overline{n}_{b,i}$  and  $\sigma_{b,i}$  obtained after final selection :

- > kinematics & topo : dilepton
- L<sub>t</sub> discriminant cut : lepton + jets

Poissonian probability to observe in the bin j:

**Predicted** 

average

di data events with a predicted average of

data

$$n_{j}(f_{+}) = n_{s}(f_{+}) + \sum_{i=1}^{N_{bkg}} n_{b,i}$$

### Ensemble tests

### Test of the maximum likelihood performance

Create a "pseudo-dataset" of MC events with:

- ☐ the same number of MC events as observed in the data
- $\square$  the signal/background composition can fluctuate according to a binomial distribution ( $n_{bkg} = N_{tot}^{observed} n_s$ )

Compare the fitted  $f_+$  to the known input  $f_+$ 

Repeat the procedure 1000 times for each f<sub>+</sub> value



### **Evaluation of systematic uncertainties**

- o Varying parameters can affect both the data sample composition (different selection efficiency of the likelihood discriminant) and the shape of  $\cos(\theta^*)$  distributions.
- o Effect on the fitted  $f_+$ : studied with pseudo-experiments (varying the parameters in the peudo-dataset)
- o Source : Jet Energy Scale,  $M_{top}$  , MC statistics, heavy flavor content (W+jets), ...

 $\Delta f_{\perp} \sim 0.03$  to 0.04 (for each one)

This document was created with Win2PDF available at <a href="http://www.daneprairie.com">http://www.daneprairie.com</a>. The unregistered version of Win2PDF is for evaluation or non-commercial use only.